- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0004000000000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Shen, Cong (3)
-
Shi, Chengshuai (2)
-
Xiong, Wei (2)
-
Yang, Jing (2)
-
Chen, Yu-Chia (1)
-
Huang, Ruiquan (1)
-
Meila, Marina (1)
-
Wu, Weiqiang (1)
-
Xu, Haifeng (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
A. Beygelzimer (4)
-
J. Wortman Vaughan (4)
-
M. Ranzato (4)
-
P.S. Liang (4)
-
Y. Dauphin (4)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
M. Ranzato; A. Beygelzimer; Y. Dauphin; P.S. Liang; J. Wortman Vaughan (Ed.)The null space of the k-th order Laplacian Lk, known as the {\em k-th homology vector space}, encodes the non-trivial topology of a manifold or a network. Understanding the structure of the homology embedding can thus disclose geometric or topological information from the data. The study of the null space embedding of the graph Laplacian L0 has spurred new research and applications, such as spectral clustering algorithms with theoretical guarantees and estimators of the Stochastic Block Model. In this work, we investigate the geometry of the k-th homology embedding and focus on cases reminiscent of spectral clustering. Namely, we analyze the {\em connected sum} of manifolds as a perturbation to the direct sum of their homology embeddings. We propose an algorithm to factorize the homology embedding into subspaces corresponding to a manifold's simplest topological components. The proposed framework is applied to the {\em shortest homologous loop detection} problem, a problem known to be NP-hard in general. Our spectral loop detection algorithm scales better than existing methods and is effective on diverse data such as point clouds and images.more » « less
-
Shi, Chengshuai; Xiong, Wei; Shen, Cong; Yang, Jing (, Advances in neural information processing systems)M. Ranzato; A. Beygelzimer; Y. Dauphin; P.S. Liang; J. Wortman Vaughan (Ed.)
-
Huang, Ruiquan; Wu, Weiqiang; Yang, Jing; Shen, Cong (, Advances in neural information processing systems)M. Ranzato; A. Beygelzimer; Y. Dauphin; P.S. Liang; J. Wortman Vaughan (Ed.)
-
Shi, Chengshuai; Xu, Haifeng; Xiong, Wei; Shen, Cong (, Advances in neural information processing systems)M. Ranzato; A. Beygelzimer; Y. Dauphin; P.S. Liang; J. Wortman Vaughan (Ed.)
An official website of the United States government

Full Text Available